summaryrefslogtreecommitdiffstats
path: root/blocksort.c
blob: d8bb26a46ff3d3cb4eebee20e40275ab63f985b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

/*-------------------------------------------------------------*/
/*--- Block sorting machinery                               ---*/
/*---                                           blocksort.c ---*/
/*-------------------------------------------------------------*/

/*--
  This file is a part of bzip2 and/or libbzip2, a program and
  library for lossless, block-sorting data compression.

  Copyright (C) 1996-1998 Julian R Seward.  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  1. Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

  2. The origin of this software must not be misrepresented; you must 
     not claim that you wrote the original software.  If you use this 
     software in a product, an acknowledgment in the product 
     documentation would be appreciated but is not required.

  3. Altered source versions must be plainly marked as such, and must
     not be misrepresented as being the original software.

  4. The name of the author may not be used to endorse or promote 
     products derived from this software without specific prior written 
     permission.

  THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

  Julian Seward, Guildford, Surrey, UK.
  jseward@acm.org
  bzip2/libbzip2 version 0.9.0c of 18 October 1998

  This program is based on (at least) the work of:
     Mike Burrows
     David Wheeler
     Peter Fenwick
     Alistair Moffat
     Radford Neal
     Ian H. Witten
     Robert Sedgewick
     Jon L. Bentley

  For more information on these sources, see the manual.
--*/


#include "bzlib_private.h"

/*---------------------------------------------*/
/*--
  Compare two strings in block.  We assume (see
  discussion above) that i1 and i2 have a max
  offset of 10 on entry, and that the first
  bytes of both block and quadrant have been
  copied into the "overshoot area", ie
  into the subscript range
  [nblock .. nblock+NUM_OVERSHOOT_BYTES-1].
--*/
static __inline__ Bool fullGtU ( UChar*  block,
                                 UInt16* quadrant,
                                 UInt32  nblock,
                                 Int32*  workDone, 
                                 Int32   i1, 
                                 Int32   i2
                               )
{
   Int32 k;
   UChar c1, c2;
   UInt16 s1, s2;

   AssertD ( i1 != i2, "fullGtU(1)" );

   c1 = block[i1];
   c2 = block[i2];
   if (c1 != c2) return (c1 > c2);
   i1++; i2++;

   c1 = block[i1];
   c2 = block[i2];
   if (c1 != c2) return (c1 > c2);
   i1++; i2++;

   c1 = block[i1];
   c2 = block[i2];
   if (c1 != c2) return (c1 > c2);
   i1++; i2++;

   c1 = block[i1];
   c2 = block[i2];
   if (c1 != c2) return (c1 > c2);
   i1++; i2++;

   c1 = block[i1];
   c2 = block[i2];
   if (c1 != c2) return (c1 > c2);
   i1++; i2++;

   c1 = block[i1];
   c2 = block[i2];
   if (c1 != c2) return (c1 > c2);
   i1++; i2++;

   k = nblock;

   do {

      c1 = block[i1];
      c2 = block[i2];
      if (c1 != c2) return (c1 > c2);
      s1 = quadrant[i1];
      s2 = quadrant[i2];
      if (s1 != s2) return (s1 > s2);
      i1++; i2++;

      c1 = block[i1];
      c2 = block[i2];
      if (c1 != c2) return (c1 > c2);
      s1 = quadrant[i1];
      s2 = quadrant[i2];
      if (s1 != s2) return (s1 > s2);
      i1++; i2++;

      c1 = block[i1];
      c2 = block[i2];
      if (c1 != c2) return (c1 > c2);
      s1 = quadrant[i1];
      s2 = quadrant[i2];
      if (s1 != s2) return (s1 > s2);
      i1++; i2++;

      c1 = block[i1];
      c2 = block[i2];
      if (c1 != c2) return (c1 > c2);
      s1 = quadrant[i1];
      s2 = quadrant[i2];
      if (s1 != s2) return (s1 > s2);
      i1++; i2++;

      if (i1 >= nblock) i1 -= nblock;
      if (i2 >= nblock) i2 -= nblock;

      k -= 4;
      (*workDone)++;
   }
      while (k >= 0);

   return False;
}

/*---------------------------------------------*/
/*--
   Knuth's increments seem to work better
   than Incerpi-Sedgewick here.  Possibly
   because the number of elems to sort is
   usually small, typically <= 20.
--*/
static Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,
                          9841, 29524, 88573, 265720,
                          797161, 2391484 };

static void simpleSort ( EState* s, Int32 lo, Int32 hi, Int32 d )
{
   Int32 i, j, h, bigN, hp;
   Int32 v;

   UChar*  block        = s->block;
   UInt32* zptr         = s->zptr;
   UInt16* quadrant     = s->quadrant;
   Int32*  workDone     = &(s->workDone);
   Int32   nblock       = s->nblock;
   Int32   workLimit    = s->workLimit;
   Bool    firstAttempt = s->firstAttempt;

   bigN = hi - lo + 1;
   if (bigN < 2) return;

   hp = 0;
   while (incs[hp] < bigN) hp++;
   hp--;

   for (; hp >= 0; hp--) {
      h = incs[hp];
      i = lo + h;
      while (True) {

         /*-- copy 1 --*/
         if (i > hi) break;
         v = zptr[i];
         j = i;
         while ( fullGtU ( block, quadrant, nblock, workDone,
                           zptr[j-h]+d, v+d ) ) {
            zptr[j] = zptr[j-h];
            j = j - h;
            if (j <= (lo + h - 1)) break;
         }
         zptr[j] = v;
         i++;

         /*-- copy 2 --*/
         if (i > hi) break;
         v = zptr[i];
         j = i;
         while ( fullGtU ( block, quadrant, nblock, workDone,
                 zptr[j-h]+d, v+d ) ) {
            zptr[j] = zptr[j-h];
            j = j - h;
            if (j <= (lo + h - 1)) break;
         }
         zptr[j] = v;
         i++;

         /*-- copy 3 --*/
         if (i > hi) break;
         v = zptr[i];
         j = i;
         while ( fullGtU ( block, quadrant, nblock, workDone,
                           zptr[j-h]+d, v+d ) ) {
            zptr[j] = zptr[j-h];
            j = j - h;
            if (j <= (lo + h - 1)) break;
         }
         zptr[j] = v;
         i++;

         if (*workDone > workLimit && firstAttempt) return;
      }
   }
}


/*---------------------------------------------*/
/*--
   The following is an implementation of
   an elegant 3-way quicksort for strings,
   described in a paper "Fast Algorithms for
   Sorting and Searching Strings", by Robert
   Sedgewick and Jon L. Bentley.
--*/

#define swap(lv1, lv2) \
   { Int32 tmp = lv1; lv1 = lv2; lv2 = tmp; }

static void vswap ( UInt32* zptr, Int32 p1, Int32 p2, Int32 n )
{
   while (n > 0) {
      swap(zptr[p1], zptr[p2]);
      p1++; p2++; n--;
   }
}

static UChar med3 ( UChar a, UChar b, UChar c )
{
   UChar t;
   if (a > b) { t = a; a = b; b = t; };
   if (b > c) { t = b; b = c; c = t; };
   if (a > b)          b = a;
   return b;
}


#define min(a,b) ((a) < (b)) ? (a) : (b)

typedef
   struct { Int32 ll; Int32 hh; Int32 dd; }
   StackElem;

#define push(lz,hz,dz) { stack[sp].ll = lz; \
                         stack[sp].hh = hz; \
                         stack[sp].dd = dz; \
                         sp++; }

#define pop(lz,hz,dz) { sp--;               \
                        lz = stack[sp].ll;  \
                        hz = stack[sp].hh;  \
                        dz = stack[sp].dd; }

#define SMALL_THRESH 20
#define DEPTH_THRESH 10

/*--
   If you are ever unlucky/improbable enough
   to get a stack overflow whilst sorting,
   increase the following constant and try
   again.  In practice I have never seen the
   stack go above 27 elems, so the following
   limit seems very generous.
--*/
#define QSORT_STACK_SIZE 1000


static void qSort3 ( EState* s, Int32 loSt, Int32 hiSt, Int32 dSt )
{
   Int32 unLo, unHi, ltLo, gtHi, med, n, m;
   Int32 sp, lo, hi, d;
   StackElem stack[QSORT_STACK_SIZE];

   UChar*  block        = s->block;
   UInt32* zptr         = s->zptr;
   Int32*  workDone     = &(s->workDone);
   Int32   workLimit    = s->workLimit;
   Bool    firstAttempt = s->firstAttempt;

   sp = 0;
   push ( loSt, hiSt, dSt );

   while (sp > 0) {

      AssertH ( sp < QSORT_STACK_SIZE, 1001 );

      pop ( lo, hi, d );

      if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH) {
         simpleSort ( s, lo, hi, d );
         if (*workDone > workLimit && firstAttempt) return;
         continue;
      }

      med = med3 ( block[zptr[ lo         ]+d],
                   block[zptr[ hi         ]+d],
                   block[zptr[ (lo+hi)>>1 ]+d] );

      unLo = ltLo = lo;
      unHi = gtHi = hi;

      while (True) {
         while (True) {
            if (unLo > unHi) break;
            n = ((Int32)block[zptr[unLo]+d]) - med;
            if (n == 0) { swap(zptr[unLo], zptr[ltLo]); ltLo++; unLo++; continue; };
            if (n >  0) break;
            unLo++;
         }
         while (True) {
            if (unLo > unHi) break;
            n = ((Int32)block[zptr[unHi]+d]) - med;
            if (n == 0) { swap(zptr[unHi], zptr[gtHi]); gtHi--; unHi--; continue; };
            if (n <  0) break;
            unHi--;
         }
         if (unLo > unHi) break;
         swap(zptr[unLo], zptr[unHi]); unLo++; unHi--;
      }

      AssertD ( unHi == unLo-1, "bad termination in qSort3" );

      if (gtHi < ltLo) {
         push(lo, hi, d+1 );
         continue;
      }

      n = min(ltLo-lo, unLo-ltLo); vswap(zptr, lo, unLo-n, n);
      m = min(hi-gtHi, gtHi-unHi); vswap(zptr, unLo, hi-m+1, m);

      n = lo + unLo - ltLo - 1;
      m = hi - (gtHi - unHi) + 1;

      push ( lo, n, d );
      push ( n+1, m-1, d+1 );
      push ( m, hi, d );
   }
}


/*---------------------------------------------*/

#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])

#define SETMASK (1 << 21)
#define CLEARMASK (~(SETMASK))

static void sortMain ( EState* s )
{
   Int32 i, j, k, ss, sb;
   Int32 runningOrder[256];
   Int32 copy[256];
   Bool  bigDone[256];
   UChar c1, c2;
   Int32 numQSorted;

   UChar*  block        = s->block;
   UInt32* zptr         = s->zptr;
   UInt16* quadrant     = s->quadrant;
   Int32*  ftab         = s->ftab;
   Int32*  workDone     = &(s->workDone);
   Int32   nblock       = s->nblock;
   Int32   workLimit    = s->workLimit;
   Bool    firstAttempt = s->firstAttempt;

   /*--
      In the various block-sized structures, live data runs
      from 0 to last+NUM_OVERSHOOT_BYTES inclusive.  First,
      set up the overshoot area for block.
   --*/

   if (s->verbosity >= 4)
      VPrintf0( "        sort initialise ...\n" );

   for (i = 0; i < BZ_NUM_OVERSHOOT_BYTES; i++)
       block[nblock+i] = block[i % nblock];
   for (i = 0; i < nblock+BZ_NUM_OVERSHOOT_BYTES; i++)
       quadrant[i] = 0;


   if (nblock <= 4000) {

      /*--
         Use simpleSort(), since the full sorting mechanism
         has quite a large constant overhead.
      --*/
      if (s->verbosity >= 4) VPrintf0( "        simpleSort ...\n" );
      for (i = 0; i < nblock; i++) zptr[i] = i;
      firstAttempt = False;
      *workDone = workLimit = 0;
      simpleSort ( s, 0, nblock-1, 0 );
      if (s->verbosity >= 4) VPrintf0( "        simpleSort done.\n" );

   } else {

      numQSorted = 0;
      for (i = 0; i <= 255; i++) bigDone[i] = False;

      if (s->verbosity >= 4) VPrintf0( "        bucket sorting ...\n" );

      for (i = 0; i <= 65536; i++) ftab[i] = 0;

      c1 = block[nblock-1];
      for (i = 0; i < nblock; i++) {
         c2 = block[i];
         ftab[(c1 << 8) + c2]++;
         c1 = c2;
      }

      for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1];

      c1 = block[0];
      for (i = 0; i < nblock-1; i++) {
         c2 = block[i+1];
         j = (c1 << 8) + c2;
         c1 = c2;
         ftab[j]--;
         zptr[ftab[j]] = i;
      }
      j = (block[nblock-1] << 8) + block[0];
      ftab[j]--;
      zptr[ftab[j]] = nblock-1;

      /*--
         Now ftab contains the first loc of every small bucket.
         Calculate the running order, from smallest to largest
         big bucket.
      --*/

      for (i = 0; i <= 255; i++) runningOrder[i] = i;

      {
         Int32 vv;
         Int32 h = 1;
         do h = 3 * h + 1; while (h <= 256);
         do {
            h = h / 3;
            for (i = h; i <= 255; i++) {
               vv = runningOrder[i];
               j = i;
               while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) {
                  runningOrder[j] = runningOrder[j-h];
                  j = j - h;
                  if (j <= (h - 1)) goto zero;
               }
               zero:
               runningOrder[j] = vv;
            }
         } while (h != 1);
      }

      /*--
         The main sorting loop.
      --*/

      for (i = 0; i <= 255; i++) {

         /*--
            Process big buckets, starting with the least full.
            Basically this is a 4-step process in which we call
            qSort3 to sort the small buckets [ss, j], but
            also make a big effort to avoid the calls if we can.
         --*/
         ss = runningOrder[i];

         /*--
            Step 1:
            Complete the big bucket [ss] by quicksorting
            any unsorted small buckets [ss, j], for j != ss.  
            Hopefully previous pointer-scanning phases have already
            completed many of the small buckets [ss, j], so
            we don't have to sort them at all.
         --*/
         for (j = 0; j <= 255; j++) {
            if (j != ss) {
               sb = (ss << 8) + j;
               if ( ! (ftab[sb] & SETMASK) ) {
                  Int32 lo = ftab[sb]   & CLEARMASK;
                  Int32 hi = (ftab[sb+1] & CLEARMASK) - 1;
                  if (hi > lo) {
                     if (s->verbosity >= 4)
                        VPrintf4( "        qsort [0x%x, 0x%x]   done %d   this %d\n",
                                  ss, j, numQSorted, hi - lo + 1 );
                     qSort3 ( s, lo, hi, 2 );
                     numQSorted += ( hi - lo + 1 );
                     if (*workDone > workLimit && firstAttempt) return;
                  }
               }
               ftab[sb] |= SETMASK;
            }
         }

         /*--
            Step 2:
            Deal specially with case [ss, ss].  This establishes the
            sorted order for [ss, ss] without any comparisons.  
            A clever trick, cryptically described as steps Q6b and Q6c
            in SRC-124 (aka BW94).  This makes it entirely practical to
            not use a preliminary run-length coder, but unfortunately
            we are now stuck with the .bz2 file format.
         --*/
         {
            Int32 put0, get0, put1, get1;
            Int32 sbn = (ss << 8) + ss;
            Int32 lo = ftab[sbn] & CLEARMASK;
            Int32 hi = (ftab[sbn+1] & CLEARMASK) - 1;
            UChar ssc = (UChar)ss;
            put0 = lo;
            get0 = ftab[ss << 8] & CLEARMASK;
            put1 = hi;
            get1 = (ftab[(ss+1) << 8] & CLEARMASK) - 1;
            while (get0 < put0) {
               j = zptr[get0]-1; if (j < 0) j += nblock;
               c1 = block[j];
               if (c1 == ssc) { zptr[put0] = j; put0++; };
               get0++;
            }
            while (get1 > put1) {
               j = zptr[get1]-1; if (j < 0) j += nblock;
               c1 = block[j];
               if (c1 == ssc) { zptr[put1] = j; put1--; };
               get1--;
            }
            ftab[sbn] |= SETMASK;
         }

         /*--
            Step 3:
            The [ss] big bucket is now done.  Record this fact,
            and update the quadrant descriptors.  Remember to
            update quadrants in the overshoot area too, if
            necessary.  The "if (i < 255)" test merely skips
            this updating for the last bucket processed, since
            updating for the last bucket is pointless.

            The quadrant array provides a way to incrementally
            cache sort orderings, as they appear, so as to 
            make subsequent comparisons in fullGtU() complete
            faster.  For repetitive blocks this makes a big
            difference (but not big enough to be able to avoid
            randomisation for very repetitive data.)

            The precise meaning is: at all times:

               for 0 <= i < nblock and 0 <= j <= nblock

               if block[i] != block[j], 

                  then the relative values of quadrant[i] and 
                       quadrant[j] are meaningless.

                  else {
                     if quadrant[i] < quadrant[j]
                        then the string starting at i lexicographically
                        precedes the string starting at j

                     else if quadrant[i] > quadrant[j]
                        then the string starting at j lexicographically
                        precedes the string starting at i

                     else
                        the relative ordering of the strings starting
                        at i and j has not yet been determined.
                  }
         --*/
         bigDone[ss] = True;

         if (i < 255) {
            Int32 bbStart  = ftab[ss << 8] & CLEARMASK;
            Int32 bbSize   = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
            Int32 shifts   = 0;

            while ((bbSize >> shifts) > 65534) shifts++;

            for (j = 0; j < bbSize; j++) {
               Int32 a2update     = zptr[bbStart + j];
               UInt16 qVal        = (UInt16)(j >> shifts);
               quadrant[a2update] = qVal;
               if (a2update < BZ_NUM_OVERSHOOT_BYTES)
                  quadrant[a2update + nblock] = qVal;
            }

            AssertH ( ( ((bbSize-1) >> shifts) <= 65535 ), 1002 );
         }

         /*--
            Step 4:
            Now scan this big bucket [ss] so as to synthesise the
            sorted order for small buckets [t, ss] for all t != ss.
            This will avoid doing Real Work in subsequent Step 1's.
         --*/
         for (j = 0; j <= 255; j++)
            copy[j] = ftab[(j << 8) + ss] & CLEARMASK;

         for (j = ftab[ss << 8] & CLEARMASK;
              j < (ftab[(ss+1) << 8] & CLEARMASK);
              j++) {
            k = zptr[j]-1; if (k < 0) k += nblock;
            c1 = block[k];
            if ( ! bigDone[c1] ) {
               zptr[copy[c1]] = k;
               copy[c1] ++;
            }
         }

         for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK;
      }
      if (s->verbosity >= 4)
         VPrintf3( "        %d pointers, %d sorted, %d scanned\n",
                   nblock, numQSorted, nblock - numQSorted );
   }
}


/*---------------------------------------------*/
static void randomiseBlock ( EState* s )
{
   Int32 i;
   BZ_RAND_INIT_MASK;
   for (i = 0; i < 256; i++) s->inUse[i] = False;

   for (i = 0; i < s->nblock; i++) {
      BZ_RAND_UPD_MASK;
      s->block[i] ^= BZ_RAND_MASK;
      s->inUse[s->block[i]] = True;
   }
}


/*---------------------------------------------*/
void blockSort ( EState* s )
{
   Int32 i;

   s->workLimit       = s->workFactor * (s->nblock - 1);
   s->workDone        = 0;
   s->blockRandomised = False;
   s->firstAttempt    = True;

   sortMain ( s );

   if (s->verbosity >= 3)
      VPrintf3( "      %d work, %d block, ratio %5.2f\n",
                s->workDone, s->nblock-1, 
                (float)(s->workDone) / (float)(s->nblock-1) );

   if (s->workDone > s->workLimit && s->firstAttempt) {
      if (s->verbosity >= 2)
         VPrintf0( "    sorting aborted; randomising block\n" );
      randomiseBlock ( s );
      s->workLimit = s->workDone = 0;
      s->blockRandomised = True;
      s->firstAttempt = False;
      sortMain ( s );
      if (s->verbosity >= 3)
         VPrintf3( "      %d work, %d block, ratio %f\n",
                   s->workDone, s->nblock-1, 
                   (float)(s->workDone) / (float)(s->nblock-1) );
   }

   s->origPtr = -1;
   for (i = 0; i < s->nblock; i++)
       if (s->zptr[i] == 0)
          { s->origPtr = i; break; };

   AssertH( s->origPtr != -1, 1003 );
}

/*-------------------------------------------------------------*/
/*--- end                                       blocksort.c ---*/
/*-------------------------------------------------------------*/