use std::collections::VecDeque; use std::ptr; use rustc::hir::def_id::DefId; use rustc::ty::Instance; use rustc::ty::ParamEnv; use rustc::ty::maps::TyCtxtAt; use rustc::ty::layout::{self, Align, TargetDataLayout, Size}; use syntax::ast::Mutability; use rustc::middle::const_val::{ConstVal, ErrKind}; use rustc_data_structures::fx::{FxHashSet, FxHashMap}; use rustc::mir::interpret::{Pointer, AllocId, Allocation, AccessKind, Value, EvalResult, Scalar, EvalErrorKind, GlobalId, AllocType}; pub use rustc::mir::interpret::{write_target_uint, write_target_int, read_target_uint}; use super::{EvalContext, Machine}; //////////////////////////////////////////////////////////////////////////////// // Allocations and pointers //////////////////////////////////////////////////////////////////////////////// #[derive(Debug, PartialEq, Copy, Clone)] pub enum MemoryKind { /// Error if deallocated except during a stack pop Stack, /// Additional memory kinds a machine wishes to distinguish from the builtin ones Machine(T), } //////////////////////////////////////////////////////////////////////////////// // Top-level interpreter memory //////////////////////////////////////////////////////////////////////////////// pub struct Memory<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> { /// Additional data required by the Machine pub data: M::MemoryData, /// Helps guarantee that stack allocations aren't deallocated via `rust_deallocate` alloc_kind: FxHashMap>, /// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations). alloc_map: FxHashMap, /// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations). /// /// Stores statics while they are being processed, before they are interned and thus frozen uninitialized_statics: FxHashMap, /// The current stack frame. Used to check accesses against locks. pub cur_frame: usize, pub tcx: TyCtxtAt<'a, 'tcx, 'tcx>, } impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> { pub fn new(tcx: TyCtxtAt<'a, 'tcx, 'tcx>, data: M::MemoryData) -> Self { Memory { data, alloc_kind: FxHashMap::default(), alloc_map: FxHashMap::default(), uninitialized_statics: FxHashMap::default(), tcx, cur_frame: usize::max_value(), } } pub fn allocations<'x>( &'x self, ) -> impl Iterator { self.alloc_map.iter().map(|(&id, alloc)| (id, alloc)) } pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> Pointer { self.tcx.alloc_map.lock().create_fn_alloc(instance).into() } pub fn allocate_bytes(&mut self, bytes: &[u8]) -> Pointer { self.tcx.allocate_bytes(bytes).into() } /// kind is `None` for statics pub fn allocate_value( &mut self, alloc: Allocation, kind: Option>, ) -> EvalResult<'tcx, AllocId> { let id = self.tcx.alloc_map.lock().reserve(); M::add_lock(self, id); match kind { Some(kind @ MemoryKind::Stack) | Some(kind @ MemoryKind::Machine(_)) => { self.alloc_map.insert(id, alloc); self.alloc_kind.insert(id, kind); }, None => { self.uninitialized_statics.insert(id, alloc); }, } Ok(id) } /// kind is `None` for statics pub fn allocate( &mut self, size: Size, align: Align, kind: Option>, ) -> EvalResult<'tcx, Pointer> { self.allocate_value(Allocation::undef(size, align), kind).map(Pointer::from) } pub fn reallocate( &mut self, ptr: Pointer, old_size: Size, old_align: Align, new_size: Size, new_align: Align, kind: MemoryKind, ) -> EvalResult<'tcx, Pointer> { if ptr.offset.bytes() != 0 { return err!(ReallocateNonBasePtr); } if self.alloc_map.contains_key(&ptr.alloc_id) { let alloc_kind = self.alloc_kind[&ptr.alloc_id]; if alloc_kind != kind { return err!(ReallocatedWrongMemoryKind( format!("{:?}", alloc_kind), format!("{:?}", kind), )); } } // For simplicities' sake, we implement reallocate as "alloc, copy, dealloc" let new_ptr = self.allocate(new_size, new_align, Some(kind))?; self.copy( ptr.into(), old_align, new_ptr.into(), new_align, old_size.min(new_size), /*nonoverlapping*/ true, )?; self.deallocate(ptr, Some((old_size, old_align)), kind)?; Ok(new_ptr) } pub fn deallocate_local(&mut self, ptr: Pointer) -> EvalResult<'tcx> { match self.alloc_kind.get(&ptr.alloc_id).cloned() { Some(MemoryKind::Stack) => self.deallocate(ptr, None, MemoryKind::Stack), // Happens if the memory was interned into immutable memory None => Ok(()), other => bug!("local contained non-stack memory: {:?}", other), } } pub fn deallocate( &mut self, ptr: Pointer, size_and_align: Option<(Size, Align)>, kind: MemoryKind, ) -> EvalResult<'tcx> { if ptr.offset.bytes() != 0 { return err!(DeallocateNonBasePtr); } let alloc = match self.alloc_map.remove(&ptr.alloc_id) { Some(alloc) => alloc, None => if self.uninitialized_statics.contains_key(&ptr.alloc_id) { return err!(DeallocatedWrongMemoryKind( "uninitializedstatic".to_string(), format!("{:?}", kind), )) } else { return match self.tcx.alloc_map.lock().get(ptr.alloc_id) { Some(AllocType::Function(..)) => err!(DeallocatedWrongMemoryKind( "function".to_string(), format!("{:?}", kind), )), Some(AllocType::Static(..)) | Some(AllocType::Memory(..)) => err!(DeallocatedWrongMemoryKind( "static".to_string(), format!("{:?}", kind), )), None => err!(DoubleFree) } } }; let alloc_kind = self.alloc_kind.remove(&ptr.alloc_id).expect("alloc_map out of sync with alloc_kind"); // It is okay for us to still holds locks on deallocation -- for example, we could store data we own // in a local, and the local could be deallocated (from StorageDead) before the function returns. // However, we should check *something*. For now, we make sure that there is no conflicting write // lock by another frame. We *have* to permit deallocation if we hold a read lock. // TODO: Figure out the exact rules here. M::free_lock(self, ptr.alloc_id, alloc.bytes.len() as u64)?; if alloc_kind != kind { return err!(DeallocatedWrongMemoryKind( format!("{:?}", alloc_kind), format!("{:?}", kind), )); } if let Some((size, align)) = size_and_align { if size.bytes() != alloc.bytes.len() as u64 || align != alloc.align { return err!(IncorrectAllocationInformation(size, Size::from_bytes(alloc.bytes.len() as u64), align, alloc.align)); } } debug!("deallocated : {}", ptr.alloc_id); Ok(()) } pub fn pointer_size(&self) -> Size { self.tcx.data_layout.pointer_size } pub fn endianness(&self) -> layout::Endian { self.tcx.data_layout.endian } /// Check that the pointer is aligned AND non-NULL. pub fn check_align(&self, ptr: Scalar, required_align: Align) -> EvalResult<'tcx> { // Check non-NULL/Undef, extract offset let (offset, alloc_align) = match ptr { Scalar::Ptr(ptr) => { let alloc = self.get(ptr.alloc_id)?; (ptr.offset.bytes(), alloc.align) } Scalar::Bits { bits, defined } => { if (defined as u64) < self.pointer_size().bits() { return err!(ReadUndefBytes); } // FIXME: what on earth does this line do? docs or fix needed! let v = ((bits as u128) % (1 << self.pointer_size().bytes())) as u64; if v == 0 { return err!(InvalidNullPointerUsage); } // the base address if the "integer allocation" is 0 and hence always aligned (v, required_align) } }; // Check alignment if alloc_align.abi() < required_align.abi() { return err!(AlignmentCheckFailed { has: alloc_align, required: required_align, }); } if offset % required_align.abi() == 0 { Ok(()) } else { let has = offset % required_align.abi(); err!(AlignmentCheckFailed { has: Align::from_bytes(has, has).unwrap(), required: required_align, }) } } pub fn check_bounds(&self, ptr: Pointer, access: bool) -> EvalResult<'tcx> { let alloc = self.get(ptr.alloc_id)?; let allocation_size = alloc.bytes.len() as u64; if ptr.offset.bytes() > allocation_size { return err!(PointerOutOfBounds { ptr, access, allocation_size: Size::from_bytes(allocation_size), }); } Ok(()) } } /// Allocation accessors impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> { fn const_eval_static(&self, def_id: DefId) -> EvalResult<'tcx, &'tcx Allocation> { let instance = Instance::mono(self.tcx.tcx, def_id); let gid = GlobalId { instance, promoted: None, }; self.tcx.const_eval(ParamEnv::reveal_all().and(gid)).map_err(|err| { match *err.kind { ErrKind::Miri(ref err, _) => match err.kind { EvalErrorKind::TypeckError | EvalErrorKind::Layout(_) => EvalErrorKind::TypeckError.into(), _ => EvalErrorKind::ReferencedConstant.into(), }, ErrKind::TypeckError => EvalErrorKind::TypeckError.into(), ref other => bug!("const eval returned {:?}", other), } }).map(|val| { let const_val = match val.val { ConstVal::Value(val) => val, ConstVal::Unevaluated(..) => bug!("should be evaluated"), }; self.tcx.const_value_to_allocation((const_val, val.ty)) }) } pub fn get(&self, id: AllocId) -> EvalResult<'tcx, &Allocation> { // normal alloc? match self.alloc_map.get(&id) { Some(alloc) => Ok(alloc), // uninitialized static alloc? None => match self.uninitialized_statics.get(&id) { Some(alloc) => Ok(alloc), None => { // static alloc? match self.tcx.alloc_map.lock().get(id) { Some(AllocType::Memory(mem)) => Ok(mem), Some(AllocType::Function(..)) => { Err(EvalErrorKind::DerefFunctionPointer.into()) } Some(AllocType::Static(did)) => { self.const_eval_static(did) } None => Err(EvalErrorKind::DanglingPointerDeref.into()), } }, }, } } fn get_mut( &mut self, id: AllocId, ) -> EvalResult<'tcx, &mut Allocation> { // normal alloc? match self.alloc_map.get_mut(&id) { Some(alloc) => Ok(alloc), // uninitialized static alloc? None => match self.uninitialized_statics.get_mut(&id) { Some(alloc) => Ok(alloc), None => { // no alloc or immutable alloc? produce an error match self.tcx.alloc_map.lock().get(id) { Some(AllocType::Memory(..)) | Some(AllocType::Static(..)) => err!(ModifiedConstantMemory), Some(AllocType::Function(..)) => err!(DerefFunctionPointer), None => err!(DanglingPointerDeref), } }, }, } } pub fn get_fn(&self, ptr: Pointer) -> EvalResult<'tcx, Instance<'tcx>> { if ptr.offset.bytes() != 0 { return err!(InvalidFunctionPointer); } debug!("reading fn ptr: {}", ptr.alloc_id); match self.tcx.alloc_map.lock().get(ptr.alloc_id) { Some(AllocType::Function(instance)) => Ok(instance), _ => Err(EvalErrorKind::ExecuteMemory.into()), } } pub fn get_alloc_kind(&self, id: AllocId) -> Option> { self.alloc_kind.get(&id).cloned() } /// For debugging, print an allocation and all allocations it points to, recursively. pub fn dump_alloc(&self, id: AllocId) { if !log_enabled!(::log::Level::Trace) { return; } self.dump_allocs(vec![id]); } /// For debugging, print a list of allocations and all allocations they point to, recursively. pub fn dump_allocs(&self, mut allocs: Vec) { if !log_enabled!(::log::Level::Trace) { return; } use std::fmt::Write; allocs.sort(); allocs.dedup(); let mut allocs_to_print = VecDeque::from(allocs); let mut allocs_seen = FxHashSet::default(); while let Some(id) = allocs_to_print.pop_front() { let mut msg = format!("Alloc {:<5} ", format!("{}:", id)); let prefix_len = msg.len(); let mut relocations = vec![]; let (alloc, immutable) = // normal alloc? match self.alloc_map.get(&id) { Some(a) => (a, match self.alloc_kind[&id] { MemoryKind::Stack => " (stack)".to_owned(), MemoryKind::Machine(m) => format!(" ({:?})", m), }), // uninitialized static alloc? None => match self.uninitialized_statics.get(&id) { Some(a) => (a, " (static in the process of initialization)".to_owned()), None => { // static alloc? match self.tcx.alloc_map.lock().get(id) { Some(AllocType::Memory(a)) => (a, "(immutable)".to_owned()), Some(AllocType::Function(func)) => { trace!("{} {}", msg, func); continue; } Some(AllocType::Static(did)) => { trace!("{} {:?}", msg, did); continue; } None => { trace!("{} (deallocated)", msg); continue; } } }, }, }; for i in 0..(alloc.bytes.len() as u64) { let i = Size::from_bytes(i); if let Some(&target_id) = alloc.relocations.get(&i) { if allocs_seen.insert(target_id) { allocs_to_print.push_back(target_id); } relocations.push((i, target_id)); } if alloc.undef_mask.is_range_defined(i, i + Size::from_bytes(1)) { // this `as usize` is fine, since `i` came from a `usize` write!(msg, "{:02x} ", alloc.bytes[i.bytes() as usize]).unwrap(); } else { msg.push_str("__ "); } } trace!( "{}({} bytes, alignment {}){}", msg, alloc.bytes.len(), alloc.align.abi(), immutable ); if !relocations.is_empty() { msg.clear(); write!(msg, "{:1$}", "", prefix_len).unwrap(); // Print spaces. let mut pos = Size::ZERO; let relocation_width = (self.pointer_size().bytes() - 1) * 3; for (i, target_id) in relocations { // this `as usize` is fine, since we can't print more chars than `usize::MAX` write!(msg, "{:1$}", "", ((i - pos) * 3).bytes() as usize).unwrap(); let target = format!("({})", target_id); // this `as usize` is fine, since we can't print more chars than `usize::MAX` write!(msg, "└{0:─^1$}┘ ", target, relocation_width as usize).unwrap(); pos = i + self.pointer_size(); } trace!("{}", msg); } } } pub fn leak_report(&self) -> usize { trace!("### LEAK REPORT ###"); let leaks: Vec<_> = self.alloc_map .keys() .cloned() .collect(); let n = leaks.len(); self.dump_allocs(leaks); n } } /// Byte accessors impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> { fn get_bytes_unchecked( &self, ptr: Pointer, size: Size, align: Align, ) -> EvalResult<'tcx, &[u8]> { // Zero-sized accesses can use dangling pointers, but they still have to be aligned and non-NULL self.check_align(ptr.into(), align)?; if size.bytes() == 0 { return Ok(&[]); } M::check_locks(self, ptr, size, AccessKind::Read)?; self.check_bounds(ptr.offset(size, self)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow) let alloc = self.get(ptr.alloc_id)?; assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes()); assert_eq!(size.bytes() as usize as u64, size.bytes()); let offset = ptr.offset.bytes() as usize; Ok(&alloc.bytes[offset..offset + size.bytes() as usize]) } fn get_bytes_unchecked_mut( &mut self, ptr: Pointer, size: Size, align: Align, ) -> EvalResult<'tcx, &mut [u8]> { // Zero-sized accesses can use dangling pointers, but they still have to be aligned and non-NULL self.check_align(ptr.into(), align)?; if size.bytes() == 0 { return Ok(&mut []); } M::check_locks(self, ptr, size, AccessKind::Write)?; self.check_bounds(ptr.offset(size, &*self)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow) let alloc = self.get_mut(ptr.alloc_id)?; assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes()); assert_eq!(size.bytes() as usize as u64, size.bytes()); let offset = ptr.offset.bytes() as usize; Ok(&mut alloc.bytes[offset..offset + size.bytes() as usize]) } fn get_bytes(&self, ptr: Pointer, size: Size, align: Align) -> EvalResult<'tcx, &[u8]> { assert_ne!(size.bytes(), 0); if self.relocations(ptr, size)?.len() != 0 { return err!(ReadPointerAsBytes); } self.check_defined(ptr, size)?; self.get_bytes_unchecked(ptr, size, align) } fn get_bytes_mut( &mut self, ptr: Pointer, size: Size, align: Align, ) -> EvalResult<'tcx, &mut [u8]> { assert_ne!(size.bytes(), 0); self.clear_relocations(ptr, size)?; self.mark_definedness(ptr.into(), size, true)?; self.get_bytes_unchecked_mut(ptr, size, align) } } /// Reading and writing impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> { /// mark an allocation pointed to by a static as static and initialized fn mark_inner_allocation_initialized( &mut self, alloc: AllocId, mutability: Mutability, ) -> EvalResult<'tcx> { match self.alloc_kind.get(&alloc) { // do not go into statics None => Ok(()), // just locals and machine allocs Some(_) => self.mark_static_initialized(alloc, mutability), } } /// mark an allocation as static and initialized, either mutable or not pub fn mark_static_initialized( &mut self, alloc_id: AllocId, mutability: Mutability, ) -> EvalResult<'tcx> { trace!( "mark_static_initialized {:?}, mutability: {:?}", alloc_id, mutability ); // The machine handled it if M::mark_static_initialized(self, alloc_id, mutability)? { return Ok(()) } let alloc = self.alloc_map.remove(&alloc_id); match self.alloc_kind.remove(&alloc_id) { None => {}, Some(MemoryKind::Machine(_)) => bug!("machine didn't handle machine alloc"), Some(MemoryKind::Stack) => {}, } let uninit = self.uninitialized_statics.remove(&alloc_id); if let Some(mut alloc) = alloc.or(uninit) { // ensure llvm knows not to put this into immutable memroy alloc.runtime_mutability = mutability; let alloc = self.tcx.intern_const_alloc(alloc); self.tcx.alloc_map.lock().set_id_memory(alloc_id, alloc); // recurse into inner allocations for &alloc in alloc.relocations.values() { self.mark_inner_allocation_initialized(alloc, mutability)?; } } else { bug!("no allocation found for {:?}", alloc_id); } Ok(()) } pub fn copy( &mut self, src: Scalar, src_align: Align, dest: Scalar, dest_align: Align, size: Size, nonoverlapping: bool, ) -> EvalResult<'tcx> { // Empty accesses don't need to be valid pointers, but they should still be aligned self.check_align(src, src_align)?; self.check_align(dest, dest_align)?; if size.bytes() == 0 { return Ok(()); } let src = src.to_ptr()?; let dest = dest.to_ptr()?; self.check_relocation_edges(src, size)?; // first copy the relocations to a temporary buffer, because // `get_bytes_mut` will clear the relocations, which is correct, // since we don't want to keep any relocations at the target. let relocations: Vec<_> = self.relocations(src, size)? .iter() .map(|&(offset, alloc_id)| { // Update relocation offsets for the new positions in the destination allocation. (offset + dest.offset - src.offset, alloc_id) }) .collect(); let src_bytes = self.get_bytes_unchecked(src, size, src_align)?.as_ptr(); let dest_bytes = self.get_bytes_mut(dest, size, dest_align)?.as_mut_ptr(); // SAFE: The above indexing would have panicked if there weren't at least `size` bytes // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and // `dest` could possibly overlap. unsafe { assert_eq!(size.bytes() as usize as u64, size.bytes()); if src.alloc_id == dest.alloc_id { if nonoverlapping { if (src.offset <= dest.offset && src.offset + size > dest.offset) || (dest.offset <= src.offset && dest.offset + size > src.offset) { return err!(Intrinsic( format!("copy_nonoverlapping called on overlapping ranges"), )); } } ptr::copy(src_bytes, dest_bytes, size.bytes() as usize); } else { ptr::copy_nonoverlapping(src_bytes, dest_bytes, size.bytes() as usize); } } self.copy_undef_mask(src, dest, size)?; // copy back the relocations self.get_mut(dest.alloc_id)?.relocations.insert_presorted(relocations); Ok(()) } pub fn read_c_str(&self, ptr: Pointer) -> EvalResult<'tcx, &[u8]> { let alloc = self.get(ptr.alloc_id)?; assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes()); let offset = ptr.offset.bytes() as usize; match alloc.bytes[offset..].iter().position(|&c| c == 0) { Some(size) => { let p1 = Size::from_bytes((size + 1) as u64); if self.relocations(ptr, p1)?.len() != 0 { return err!(ReadPointerAsBytes); } self.check_defined(ptr, p1)?; M::check_locks(self, ptr, p1, AccessKind::Read)?; Ok(&alloc.bytes[offset..offset + size]) } None => err!(UnterminatedCString(ptr)), } } pub fn read_bytes(&self, ptr: Scalar, size: Size) -> EvalResult<'tcx, &[u8]> { // Empty accesses don't need to be valid pointers, but they should still be non-NULL let align = Align::from_bytes(1, 1).unwrap(); self.check_align(ptr, align)?; if size.bytes() == 0 { return Ok(&[]); } self.get_bytes(ptr.to_ptr()?, size, align) } pub fn write_bytes(&mut self, ptr: Scalar, src: &[u8]) -> EvalResult<'tcx> { // Empty accesses don't need to be valid pointers, but they should still be non-NULL let align = Align::from_bytes(1, 1).unwrap(); self.check_align(ptr, align)?; if src.is_empty() { return Ok(()); } let bytes = self.get_bytes_mut(ptr.to_ptr()?, Size::from_bytes(src.len() as u64), align)?; bytes.clone_from_slice(src); Ok(()) } pub fn write_repeat(&mut self, ptr: Scalar, val: u8, count: Size) -> EvalResult<'tcx> { // Empty accesses don't need to be valid pointers, but they should still be non-NULL let align = Align::from_bytes(1, 1).unwrap(); self.check_align(ptr, align)?; if count.bytes() == 0 { return Ok(()); } let bytes = self.get_bytes_mut(ptr.to_ptr()?, count, align)?; for b in bytes { *b = val; } Ok(()) } pub fn read_scalar(&self, ptr: Pointer, ptr_align: Align, size: Size) -> EvalResult<'tcx, Scalar> { self.check_relocation_edges(ptr, size)?; // Make sure we don't read part of a pointer as a pointer let endianness = self.endianness(); let bytes = self.get_bytes_unchecked(ptr, size, ptr_align.min(self.int_align(size)))?; // Undef check happens *after* we established that the alignment is correct. // We must not return Ok() for unaligned pointers! if self.check_defined(ptr, size).is_err() { return Ok(Scalar::undef().into()); } // Now we do the actual reading let bits = read_target_uint(endianness, bytes).unwrap(); // See if we got a pointer if size != self.pointer_size() { if self.relocations(ptr, size)?.len() != 0 { return err!(ReadPointerAsBytes); } } else { let alloc = self.get(ptr.alloc_id)?; match alloc.relocations.get(&ptr.offset) { Some(&alloc_id) => return Ok(Pointer::new(alloc_id, Size::from_bytes(bits as u64)).into()), None => {}, } } // We don't. Just return the bits. Ok(Scalar::Bits { bits, defined: size.bits() as u8, }) } pub fn read_ptr_sized(&self, ptr: Pointer, ptr_align: Align) -> EvalResult<'tcx, Scalar> { self.read_scalar(ptr, ptr_align, self.pointer_size()) } pub fn write_scalar(&mut self, ptr: Scalar, ptr_align: Align, val: Scalar, size: Size, signed: bool) -> EvalResult<'tcx> { let endianness = self.endianness(); let bytes = match val { Scalar::Ptr(val) => { assert_eq!(size, self.pointer_size()); val.offset.bytes() as u128 } Scalar::Bits { bits, defined } if defined as u64 >= size.bits() && size.bits() != 0 => bits, Scalar::Bits { .. } => { self.check_align(ptr.into(), ptr_align)?; self.mark_definedness(ptr, size, false)?; return Ok(()); } }; let ptr = ptr.to_ptr()?; { let align = self.int_align(size); let dst = self.get_bytes_mut(ptr, size, ptr_align.min(align))?; if signed { write_target_int(endianness, dst, bytes as i128).unwrap(); } else { write_target_uint(endianness, dst, bytes).unwrap(); } } // See if we have to also write a relocation match val { Scalar::Ptr(val) => { self.get_mut(ptr.alloc_id)?.relocations.insert( ptr.offset, val.alloc_id, ); } _ => {} } Ok(()) } pub fn write_ptr_sized_unsigned(&mut self, ptr: Pointer, ptr_align: Align, val: Scalar) -> EvalResult<'tcx> { let ptr_size = self.pointer_size(); self.write_scalar(ptr.into(), ptr_align, val, ptr_size, false) } fn int_align(&self, size: Size) -> Align { // We assume pointer-sized integers have the same alignment as pointers. // We also assume signed and unsigned integers of the same size have the same alignment. let ity = match size.bytes() { 1 => layout::I8, 2 => layout::I16, 4 => layout::I32, 8 => layout::I64, 16 => layout::I128, _ => bug!("bad integer size: {}", size.bytes()), }; ity.align(self) } } /// Relocations impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> { fn relocations( &self, ptr: Pointer, size: Size, ) -> EvalResult<'tcx, &[(Size, AllocId)]> { let start = ptr.offset.bytes().saturating_sub(self.pointer_size().bytes() - 1); let end = ptr.offset + size; Ok(self.get(ptr.alloc_id)?.relocations.range(Size::from_bytes(start)..end)) } fn clear_relocations(&mut self, ptr: Pointer, size: Size) -> EvalResult<'tcx> { // Find the start and end of the given range and its outermost relocations. let (first, last) = { // Find all relocations overlapping the given range. let relocations = self.relocations(ptr, size)?; if relocations.is_empty() { return Ok(()); } (relocations.first().unwrap().0, relocations.last().unwrap().0 + self.pointer_size()) }; let start = ptr.offset; let end = start + size; let alloc = self.get_mut(ptr.alloc_id)?; // Mark parts of the outermost relocations as undefined if they partially fall outside the // given range. if first < start { alloc.undef_mask.set_range(first, start, false); } if last > end { alloc.undef_mask.set_range(end, last, false); } // Forget all the relocations. alloc.relocations.remove_range(first ..= last); Ok(()) } fn check_relocation_edges(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> { let overlapping_start = self.relocations(ptr, Size::ZERO)?.len(); let overlapping_end = self.relocations(ptr.offset(size, self)?, Size::ZERO)?.len(); if overlapping_start + overlapping_end != 0 { return err!(ReadPointerAsBytes); } Ok(()) } } /// Undefined bytes impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> { // FIXME(solson): This is a very naive, slow version. fn copy_undef_mask( &mut self, src: Pointer, dest: Pointer, size: Size, ) -> EvalResult<'tcx> { // The bits have to be saved locally before writing to dest in case src and dest overlap. assert_eq!(size.bytes() as usize as u64, size.bytes()); let mut v = Vec::with_capacity(size.bytes() as usize); for i in 0..size.bytes() { let defined = self.get(src.alloc_id)?.undef_mask.get(src.offset + Size::from_bytes(i)); v.push(defined); } for (i, defined) in v.into_iter().enumerate() { self.get_mut(dest.alloc_id)?.undef_mask.set( dest.offset + Size::from_bytes(i as u64), defined, ); } Ok(()) } fn check_defined(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> { let alloc = self.get(ptr.alloc_id)?; if !alloc.undef_mask.is_range_defined( ptr.offset, ptr.offset + size, ) { return err!(ReadUndefBytes); } Ok(()) } pub fn mark_definedness( &mut self, ptr: Scalar, size: Size, new_state: bool, ) -> EvalResult<'tcx> { if size.bytes() == 0 { return Ok(()); } let ptr = ptr.to_ptr()?; let alloc = self.get_mut(ptr.alloc_id)?; alloc.undef_mask.set_range( ptr.offset, ptr.offset + size, new_state, ); Ok(()) } } //////////////////////////////////////////////////////////////////////////////// // Unaligned accesses //////////////////////////////////////////////////////////////////////////////// pub trait HasMemory<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> { fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M>; fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M>; /// Convert the value into a pointer (or a pointer-sized integer). If the value is a ByRef, /// this may have to perform a load. fn into_ptr( &self, value: Value, ) -> EvalResult<'tcx, Scalar> { Ok(match value { Value::ByRef(ptr, align) => { self.memory().read_ptr_sized(ptr.to_ptr()?, align)? } Value::Scalar(ptr) | Value::ScalarPair(ptr, _) => ptr, }.into()) } fn into_ptr_vtable_pair( &self, value: Value, ) -> EvalResult<'tcx, (Scalar, Pointer)> { match value { Value::ByRef(ref_ptr, align) => { let mem = self.memory(); let ptr = mem.read_ptr_sized(ref_ptr.to_ptr()?, align)?.into(); let vtable = mem.read_ptr_sized( ref_ptr.ptr_offset(mem.pointer_size(), &mem.tcx.data_layout)?.to_ptr()?, align )?.to_ptr()?; Ok((ptr, vtable)) } Value::ScalarPair(ptr, vtable) => Ok((ptr.into(), vtable.to_ptr()?)), _ => bug!("expected ptr and vtable, got {:?}", value), } } fn into_slice( &self, value: Value, ) -> EvalResult<'tcx, (Scalar, u64)> { match value { Value::ByRef(ref_ptr, align) => { let mem = self.memory(); let ptr = mem.read_ptr_sized(ref_ptr.to_ptr()?, align)?.into(); let len = mem.read_ptr_sized( ref_ptr.ptr_offset(mem.pointer_size(), &mem.tcx.data_layout)?.to_ptr()?, align )?.to_bits(mem.pointer_size())? as u64; Ok((ptr, len)) } Value::ScalarPair(ptr, val) => { let len = val.to_bits(self.memory().pointer_size())?; Ok((ptr.into(), len as u64)) } Value::Scalar(_) => bug!("expected ptr and length, got {:?}", value), } } } impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasMemory<'a, 'mir, 'tcx, M> for Memory<'a, 'mir, 'tcx, M> { #[inline] fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M> { self } #[inline] fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M> { self } } impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasMemory<'a, 'mir, 'tcx, M> for EvalContext<'a, 'mir, 'tcx, M> { #[inline] fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M> { &mut self.memory } #[inline] fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M> { &self.memory } } impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> layout::HasDataLayout for &'a Memory<'a, 'mir, 'tcx, M> { #[inline] fn data_layout(&self) -> &TargetDataLayout { &self.tcx.data_layout } }